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Abstract
Three-dimensional Flash Lidar camera is a new technology which allows a single camera
to take multiple images in a fast succession. It produces a series of range delimited im-
agery using a single laser flash. The imagery can distinguish between objects at different
distances, such as the sea-surface and underwater objects. We propose an algorithm to
automatically find objects in 3D Flash Lidar images. We apply a transformation to reduce
the computational complexity and apply stable unsupervised multiphase segmentation for
object identification. Numerical results are presented to validate the approach both using
scalar and vectorial models. This segmentation approach reduces the complexity of the
problem and clearly distinguishes objects in the imagery.

1. Introduction

Three-dimensional Flash Lidar imaging represents one of the latest advances in imaging
technology [18] which uses a single laser pulse to generate a three-dimensional data. 3D
Flash Lidar camera uses smart pixels for signal integrators: each pixel can accurately and
independently count time to the target. The light reflected from a certain distance is
captured in a plane of the image volume in a fast succession.

This imagery is different from the typical LIDAR (LIght Detecting And Ranging) images,
where several laser pulses are used to record the distance to the surface or objects. LIDAR
has many applications in environmental and civil engineering and it is widely used for
forestry, building constructions, and ground surface modeling as in [4, 7, 11, 14, 22, 23].
There are many references for LIDAR images, while 3D Flash Lidar image is a new approach.
3D Flash Lidar images capture the luminance of each distance, then produce a succession
of 2D images at particular distances from the camera, that 3D Flash Lidar images have
very different characteristics compared to LIDAR images. In this paper, we propose a first
work on using multiphase segmentation to identifying objects in 3D Flash Lidar images.

One of the challenges of 3D Flash Lidar images comes from the images taken from a
moving vehicle. For example, when the images are taken from an airborne vehicle, one
object can be captured in few different 2D images each from a different distance from the
camera. Figure 1 shows an example of 3D Flash Lidar image, a partial sequence of images
taken from an airborne vehicle. The plane (a) depicts objects closer to the camera, and
image (b) through (h) successively farther. Notice, the glint from the water surface begins
in plane (b). The submerged object comes into view beginning with plane (f), then it is
clearly visible in (g). It is evident that the airplane is not parallel to the water, since the
glint first appears on the right side of the planes but disappears on the left.

The objective of this paper is to propose a method to easily identify objects submerged
underwater. This is not a trivial issue, due to the glint, the tilt from the moving aircraft,
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Fig. 1: An example of 3D Flash Lidar image taken from an airborne vehicle. Image (a)-(h) is a sequence
of 2D image planes taken from each different distances from the camera to the floor. Image (a) and (b) are
mid-air, image (b)-(e) show parts of the water surface, and image (e)-(g) captured underwater and floor.

and the volume of the data size of 3D Flash Lidar image. One can consider adjusting the
tilt of the 2D planes by determining the oblique image plane that represents water surface.
Instead, we propose directly finding an object without adjusting for alignment.

This is the first work using variational segmentation techniques for 3D Flash Lidar im-
ages. We propose a stable method by properly reducing the size and using unsupervised
segmentation. In Section 2, we illustrate the procedure with the set up of the model, then
a fast algorithm is explained in Section 3. Various numerical experiments are presented in
Section 4, followed by concluding remarks in Section 5.

2. Multiphase segmentation for 3D Flash Lidar image

Three-dimensional Flash Lidar images capture multiple 2D images of the same scene, where
each image is from different distances to the camera. Let an image domain be Ω ⊂ R2,
and the captured image I be I : Ω × D → Rm where D = {1, 2, . . . ,m} is the (finite)
discrete values representing different distance from the camera. I(Ω, 1) : Ω → R is the
image closest to the camera, I(Ω, 2) the next closest to the camera, and I(Ω,m) represents
the farthest from the camera. We use the notation (x, y, z) to represent each pixel in the
image, (x, y) ∈ Ω and z ∈ D. Note that the z-coordinate is different from xy-coordinates
of Ω. 3D Flash Lidar images capture what can be seen from the camera, that the depth
information is not complete. It cannot find an object hidden behind a solid object, and the
planar dimension should not be treated equally to the depth z direction. This is also noticed
in [3], where the authors considered a weighted denoising for 3D Flash Lidar images, since
the spacial direction compared to the depth direction have different scales.

To properly utilize the distance information, we consider the profile of the image in the
z-direction,

pxy(z) = I(x, y, z). (1)
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Fig. 2: Example of the profile function pxy(z) in (1) for the airborne example in Figure 1. The graphs in the
same column are taken from locations next to each other, which shows the similarities. When the profiles
are compared against different columns, the differences are more noticeable.

Figure 2 illustrates some of profiles pxy(z) for different locations of (x, y) ∈ Ω for the airborne
example in Figure 1. The graphs in the same column are taken from locations next to each
other, which shows the similarity between them. When the profile graphs are compared
against different columns, the differences are more noticeable. This example illustrates the
importance of the depth profile while identifying different objects.

The key idea of our proposed approach is to classify these profiles for object identifica-
tion. We capture the differences in these profiles, then cluster the profiles according to the
difference by a segmentation method. Since the main idea is to capture the difference in
the depth profile, we can consider reducing the size of the data for easy computation.

Step 1: Reducing the size of information. Notice from the profile graphs in Figure 2,
that the graphs are all oscillatory. Therefore, to capture the difference in these profiles,
Fourier transformation with trigonometric function is a good choice for the base function.
We apply a Fast Fourier Transformation (FFT) to the z direction,

aj(x, y) =

m
∑

z=1

pxy(z)e−i2πjz/m. (2)

Here z ∈ D and m are as defined above. We pick the first few frequencies, which correspond
to larger differences, and define a vectorial image on Ω as,

u = (a1, a2, a3, . . . an) : Ω → Rn. (3)

This n is the number of frequencies used and in this paper, we used n = 3 in this paper.
The process savings are realized when n is much smaller than m, and the elimination of the
higher frequencies is a common noise suppression technique which validates our choice of
using only few beginning coefficients. In our experiments, it was often sufficient to use an
image such as ū =

√

|a1|2 + |a2|2 + |a3|2, and apply scalar multiphase image segmentation.
This ū is different from simply adding some planes of the image I directly. Since this ū
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emphasizes the differences captured by the transformation, there is no need to hand pick
important planes directly.

Step 2: Segmentation and Classification. Image segmentation is a widely studied
image processing task, where it simplifies (partitions) the image, making it easier to identify
certain objects or features in the image. There are various different approaches: Geman and
Geman’s mixture random field models [5], Mumford and Shah’s piecewise smooth variational
image models [12], the graph-cutting and spectral method of Shi and Malik [16], and the
data-driven Monte-Carlo Markov chain model (DDMCMC) of Tu and Zhu [20] are some of
the classical well-known examples. In variational settings, Mumford-Shah model [12] and
Chan-Vese (CV) model [1] are well-known and CV model has been extended to multiphase
segmentation as in [2, 8, 9, 13, 19, 21].

We apply an unsupervised multiphase image segmentation method [15]. Different from the
case of two-phase identification, multiphase segmentation has sensitivity issues: choosing an
initial condition, and pre-assigning the number of phases. An unsupervised segmentation
model [15] automatically gives a reasonable number of phases while it segments the image.
Remote sensing and its application to 3D Flash Lidar image is an excellent application of
unsupervised multiphase model, since most objects and backgrounds are not predetermined
and the number of phases are unknown. An unsupervised method can automatically give
a reasonable segmentation result, and it is based on minimizing the following functional:

E [k, {χi}, {ci}|ū] = µ

(

k
∑

i=1

P (χi)

|χi|

)

k
∑

i=1

P (χi) +

n
∑

j=1

k
∑

i=1

∫

χi

|uj − c
j
i |

2dx. (4)

Here the super index j indicates the length of the vectorial image u. When a scalar image
is used, set n = 1. The notations P (A) and |A| represent the one-dimensional Hausdorff

measure and the Lebesque measure of a phase A respectively. The term P (χi)
|χi|

is an inverse
scale term that under minimization tends to favor larger objects. Note that each phase,
{χi}, intensity average {ci}, and the number of phases k are all unknowns, only the observed
image ū is given.

The proposed method is these two steps: apply FFT in z-direction to reduce the size of
data, then apply a fast and stable multiphase segmentation algorithm to few low frequency
coefficients. By utilizing the profile, we can directly apply the algorithm to the 3D Flash
Lidar image. This is more efficient compared to adjusting the 2D plan or dealing with com-
plication of 3D reconstruction. Also, utilizing transform allows fast computation without
the burden of working with the full image. One can utilize different transformation as long
as it can distinguish differences among the profiles.

3. Details of the segmentation algorithm

When image segmentation is applied, we represent each segment as a characteristic function
χi for i = 1, . . . ,K. The minimum of the energy is computed by considering the change
directly as in [6, 15, 17]. When a pixel (x, y) in phase l moves to another phase j, the energy
change is computed by

∆Elj = µ∆F +
n
∑

i=1

[

(ui − ci
j)

2 nj

nj + 1
− (ui − ci

l)
2 nl

nl − 1

]

. (5)
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Algorithm

• Input a 3D Flash Lidar image I

• Use a transformation such as FFT in z-direction,
pick few frequency values a1, a2, . . . , an, and define u = (a1, a2, . . . , an).

• Apply multiphase segmentation to the reduced image u by :
Set an initial phase: |χ1| = |Ω| with ko = 1.
Iterate

1. At each pixel (x, y) ∈ Ω (with χl(x, y) = 1 and χi(x, y) = 0 for ∀i 6= l),
compute value = minj{∆Elj |j 6= l, j = 1, . . . , k + 1}, with ∆Elj in (5)
and let h = arg minj{∆Elj |j 6= l, j = 1, . . . , k + 1}. Here k + 1 refers to a new phase.

Then,






if value < 0, set χh(x, y) = 1
and χl(x, y) = 0.

if value > 0, do nothing

2. Update k = h, calculate ni = |χi| and ci for each phase i = 1, . . . , k.

Table 1: 3D Flash Lidar image segmentation algorithm

Here the super index j indicates the length of the vectorial image u as before, and for scalar
case, we set n = 1. ci is the average of each phase i, and ni is the number of pixels in phase
i, i.e. area |χi| = ni.

This energy difference (5) can be easily evaluated by computing each terms. The term
∆F is the change in the total length and the scale term, which can be simply expressed as

∆F = Tl(Sj −Sl)+Sj∆T. Here Sj =
∑ P (χi)

ni
when (x, y) in phase j. Tl is the total length

when (x, y) in phase l, which is computed by adding all the difference of the characteristic
function χl such as Tl =

∑K
i=1 P (χi) =

∑K
i=1

∑

(x,y)∈Ω{|χi(x+1, y)−χi(x, y)|+|χi(x, y+1)−
χi(x, y)|}. The difference of total length, ∆T , can be also easily computed by considering
the addition of change in the length in phase j and phase l, ∆T = ∆P (χj) + ∆P (χl). The
change in length of each phase is a function of the dimension of the space. If a pixel joins
or leaves a phase, the change in length can be computed using its neighbors, and can be

simply computed by ∆T = −2
(

∑

(i,j)∈N χj(i, j) −
∑

(i,j)∈N χl(i, j)
)

. (See [15]) for related

details.) By combining all these terms, the change in energy (5) can be computed. Now, the
minimum can be found by computing the difference in energy. If ∆Elj > 0, the pixel will
not change to phase j since that will increase the energy. If this value ∆Elj is negative, it is
better to move (x, y) to phase j. This is computing an explicit difference of the energy when
the pixel changes from one phase l to another phase j. Table 1 illustrates the process of
the algorithm. The scalar versions of the functional (4) and the algorithm (5) demonstrate
stability for general images when no prior information is given, and related properties and
stability of these approach can be found in [15] or [10]. In this approach of vectorial case,
we also experience similar stability for general segmentation.

4. Numerical Experiments

One of the best applications of this approach is in identifying objects underwater. Figure 1
shows an example of 3D Flash Lidar image of a underwater target. It is showing 8 planes
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(a) (b) (c) (d) Result

Fig. 3: Images (a) and (b) are a2 and a3: the frequency response of FFT applied to z-direction of 3D Flash
Lidar image in Figure 1. They capture both the object and glints of the water. (c) The scalar image ū. (d)
The result using a scalar multiphase segmentation on ū, with λ = 0.0001. Image (d) clearly identifies the
object separately from the glares of the water.

(among the many images in z direction). Notice the glint from the water is spread among
different 2D planes, and the object and glints are hard to distinguish. The image planes
are not horizontal, but oblique. If multiphase segmentation is directly applied to this full
image, the glint as well as the object can be identified as one phase.

We apply the proposed method. The top row of Figure 3 (a)-(b) shows the frequency
responses: a2 and a3. The primary characteristics of larger targets are evident in these
lower frequency images, and the frequency images (a)-(b) include the object as well as all
the glints from the water surface. Image (c) is the scalar image ū of these lower frequency
images. To clearly identify the object, we apply multiphase image segmentation to image
(c) and Figure 3 (d) shows the result. This result (d) is one phase out of the 8 phases
automatically segmented using λ = 0.0001 in (4). This method clearly separates the object
from the glint of the water effectively without any prior knowledge of the sense.

As a comparison, Figure 4 shows results using a two phase segmentation [1] for the air-
borne example in Figure 1. This example shows that regardless of using scalar or vectorial
model of CV model, two phase segmentation is not suitable for automatically finding mul-
tiple different objects and classifying the different objects. The glints as well as the object
are in one phase of the segmentation due to the limitation of finding only two phases.
Among different multiphase segmentation methods, the unsupervised model [15] automat-
ically chooses a reasonable number of k and gives stable segmentation for general images.

The top row of Figure 5 is another example of a 3D Flash Lidar image, showing an object
on the ground. Figure 5 second row shows segmentation results, using scalar and vectorial
models. Both results show reasonable results; well-identifying the location of the object.
Image (i) is one phase out of nine and image (j) is one out of seven automatically segmented
phases. Using the vectorial model gives a cleaner result compared to the scalar case, since
the vectorial model can be more stable against noise introduced from one of the images
a2, a3 or a4.

5. Concluding Remark

Three-dimensional Flash Lidar cameras are one of the latest advances in imaging technology
[18]. It produces a series of range delimited imagery using a single laser flash. We propose
an algorithm to find objects in the 3D Flash Lidar image using a variational model of
unsupervised multiphase image segmentation. The imagery can distinguish between objects
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(a) (b) (c) Result

Fig. 4: (a) The result using two phase segmentation [1] on a scalar image ū. (b) The result using two phase
vectorial segmentation on a vectorial image u. These experiments show that two phase segmentation is not
suitable for automatically finding multiple objects. The glint and the object are in the same phase, due to
the limitation of finding only two phases. (c) The result using the proposed approach.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) Result (Scalar) (j) Result (Vector)

Fig. 5: The top row are few images of a 3D Flash Lidar image showing a single object on the ground. Image
(f)-(h) are a2, a3 and a4, respectively. Image (i) is a result using a scalar case of ū, using λ = 0.0001 and
Image (j) is a result using a vectorial case of u = (a2, a3, a4), using vectorial model with λ = 0.0005. Using
the vectorial model gives a cleaner result compared to the scalar case, since the vectorial model can be more
stable against noise introduced from one of the images a2, a3 and a4.

at different distances, such as the sea-surface and underwater objects. The proposed method
particularly works well when objects are underwater with presence of high frequency noise,
as in Figure 3. A step of FFT helps to reduce the size of the image, and makes the
segmentation process stable by reducing the noise. This is a first work on underwater object
identification of 3D Flash Lidar images, and there are many interesting problem: identifying
tall objects where parts of such image are spread across many different planes is a challenging
problem, especially since only discrete height information is available. Prior information
can be added for better identification of some particular objects, also some post-processing
can be added to improve the quality of the segmentation result. Three-dimensional Flash
Lidar images have a rich information set and various interesting properties can be explored.
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